
Journal of Global Optimization 9: 153-167, 1996.
@ 1996 Kluwer Academic Publishers. Printed in the Netherlands.

153

Computational Experience Using an Edge Search
Algorithm for Linear Reverse Convex Programs

STEPHEN E. JACOBSEN
Electrical Engineering Department, University of California, Los Angeles, California 90024, U.S.A.
(email: jacobsen @ ee. ucla. edu)

KHOSROW MOSHIRVAZIRI
Information Systems Department, California SFaFe University, Long Beach, California, 90840 and
Electrical Engineering Department, University of California, Los Angeles, CA 90024, U.S.A.
(email: moshir@csulb.edu)

(Received: 8 November 1994; accepted: 23 January 1996)

Abstract. This paper presents computational experience with a rather straight forward implementa-
tion of an edge search algorithm for obtaining the globally optimal solution for linear programs with
an additional reverse convex constraint. The paper’s purpose is to provide a collection of problems,
with known optimal solutions, and performance information for an edge search implementation so
that researchers may have some benchmarks with which to compare new methods for reverse con-
vex programs or concave minimization problems. There appears to be nothing in the literature that
provides computational experience with a basic edge search procedure. The edge search implemen-
tation uses a depth first strategy. As such, this paper’s implementation of the edge search algorithm
is a modification of Hillestad’s algorithm [111. A variety of test problems is generated by using a
modification of the method of Sung and Rosen [20], as well as a new method that is presented in this
paper. Test problems presented may be obtained at ftp://newton.ee.ucla.edu/nonconvex/pub/.

Key words: Reverse convex programs, nonconvex optimization, global optimization, test problem
generation, linear programming, nonlinear programming, computational experiments.

1. Introduction

Many problems of engineering design give rise to nonconvex global optimization
problems. In this paper, we restrict our attention to the linear reverse convex
programming problem, denoted by LRCP. This problem is defined to be

min{cTzIZ E P, g(X) 5 0)

where P is a convex polytope in Rn and g : R” + R1 is a concave function. The
constraint is called reverse convex since the direction of the inequality is the reverse
of what is needed to have a convex programming problem. The principle difficulty
with LRCP is the fact that the reverse convex constraint generally produces a
nonconvex feasible region with non-global local minima and, often, a disconnected
feasible region. The computational complexity of this class of problems can be
seen by noting that the O-l linear integer programming problem can be rewritten

154 STEPHEN E. JACOBSEN AND KHOSROW MOSHIRVAZIRI

as min (C’Z (z E P, x E In, xT(e - X) I 0}, a member of the class LRCP,
where e denotes a vector of all ones and 1, is a unit hypercube in Rn. Similarly, the
concave minimization problem min { f(x) 1 z E P } can be rewritten as min { 71 -
q + f(x) < 0, LB 5 7 I UB, z E P }, a member of the class LRCP. Of course,
the lower bound, LB, must be at least as small as the optimal function value of the
original concave minimization problem. A specific form of LRCP was studied by
Bansal and Jacobsen [3, 41 in the context of network flow capacity optimization
under economies-of-scale. Hillestad and Jacobsen [10, 91 showed that the convex
hull of the feasible region is a convex polytope and, as a result, a global solution
lies on an edge of P. In [18] Rosen developed an iterative procedure, based upon
the linearization of g, that converges to a local solution. Avriel and Williams [1,2]
developed a similar procedure in the context of engineering design. Ueing [24]
developed a branch and bound procedure, for the case of multiple reverse convex
constraints, by solving a number of convex programming problems. In [21], an
algorithm is developed that is based upon an alternating sequence of linear programs
and concave minimization problems. Hillestad [1 I] developed an edge search
algorithm for finding an optimal solution for (LRCP). The algorithm works within
P N G to find, in a systematic fashion, intersections of { z 1 g(x) = 0 } with the
edges of P. Subsequently, Hillestad and Jacobsen 191 developed an algorithm that
works within the feasible region, P fl G. This latter approach was subsequently
generalized by Tuy [22]. Of course, there have been several algorithms developed
for LRCP and we refer the reader to the text of Horst and Tuy [121 for a fairly
complete bibliography of such methods.

We rewrite problem (LRCP) as follows:

Minimize cTx

Subject to : Ax 5 b

g(x) 5 0 (LRCP) (1)
x20

where g:Rn t R’ is concave, A is m x n and, of course, c and b are vectors of
order n and m, respectively. Let P = (x/Ax 5 b, x _> 0}, G = 1x1 g(x) < 0}
and denote the feasible region by F = P n G. We assume that F # 4 and that
P is bounded. Furthermore, we assume that there is a unique optimal solution for
the associated linear program, x0 = Argmin {cTxI x E P}, and that x0 6 G. It is
well known that an optimal solution for (LRCP) lies on an edge of P and on the
boundary of G (e.g., see [lo, 91). Thus, it is sufficient to find all the intersections of
the surface { x (g(x) = 0 } with the edges of P and then to choose the best among
them as an optimal solution.

However, with respect to the above methods, there is nothing in the literature
that demonstrates numerical efficiency of such methods, in comparison with the
basic notion of edge search for solving LRCP. It is to the latter point that this
paper is addressed. We describe below our implementation of an edge search algo-

LINEAR REVERSE CONVEX PROGRAMS 155

rithm, our development of LRCP test problems, and our solution information for
each of these test problems. Our point is not the development of a new algorithm;
rather, our purpose is to set forth the results of a relatively efficient implementation
of edge search and to make the numerical results known to the research com-
munity. Additionally, these problems are available to the research community at
ftp: //newton.ee.ucla.edu/nonconvex/pub/;asaresult,researchers
have at their disposal actual LRCP problems that have been solved by an edge
search implementation and will be able to demonstrate the relative numerical effi-
ciency of newly proposed algorithms.

2. Description of the Algorithm

Since the purpose of this paper is to present LRCP problems that have been
solved by an edge search implementation, it is important to fully describe that
implementation. Hillestad [1 l] describes a breadth$rst strategy in his edge search
procedure. That is, from x0, the solution of the associated linear program, each
of the neighbors, with higher objective values, is visited; then, from each of these
neighbors, visits are made to their corresponding neighbors; the method continues
in this fashion. Vertices are fathomed along the way and the method produces an
optimal solution on an edge of P. Our implementation is a depth$rst strategy; that
is, a sequence of neighboring vertices, starting with go, is followed. Each vertex
in this sequence has a larger value of the objective function; vertices are added to
this sequence until a vertex is fathomed. At this point, we return to the predecessor
of the fathomed vertex and similarly generate a new sequence of such vertices,
starting from the predecessor vertex, that does not visit previously visited vertices.
The intuitive justification for a depth first strategy is that it seems likely to produce
a good upper bound more quickly than a breadth first strategy may. Furthermore,
the process of fathoming vertices, as well as the selection of vertices to be added
to a specific sequence (or search path), is done according to certain heuristic rules
and criteria to be described shortly. As in Hillestad’s algorithm, upper bounds are
updated at various points and are used to fathom vertices.

Let V denote the set of vertices of P; for each z E V let NV(Z) denote the set
of neighboring vertices. For each vertex 2 E V, let N(z) = { 7~ E NV(z) 1 cT (y -
z) > 0 }. That is, N(z) is the set of neighbors with larger objective values. Also,
for each vertex z of P, we let u, ZI E V denote neighboring vertices of 2 with
the properties z E N(u) and 21 E N(z). In the algorithm’s description it is to be
understood that whenever z is updated, the predecessor of 2, is also updated. Let
9 denote the unique optimal solution for the linear program and we assume, of
course, that z” is not feasible for the reverse convex constraint. Set the initial upper
bound to be UB. In the statement of the algorithm that follows, we assume that we
have at hand an initial estimate of an optimal solution and a finite upper bound. Of
course,wemaytake2?=AArgmaz{cTz]Az<b, ~>O},andsetUB=c~?.In
what follows, .?= denotes the set of fathomed vertices. Initially, F = 4. At various

156 STEPHEN E. JACOBSEN AND KHOSROW MOSHIRVAZIRI

TABLE I. Data structure of the book-keeping process

Structure of the Recorded Data

Vertex x0 . xi ..,......,................

i?(x) gw dxi)
r - 7-i
s - . Si .

e eo 4

L LO Li

points in the procedure, we will have a pair of vertices, u and x, with the property
that g(u) > 0 and g(z) 5 0. When this occurs, we need to find the intersection
of the surface { y 1 g(y) = 0 } with the edge [u, CC]. Note that this may easily be
accomplished by solving the one-dimensional problem

min { Q E [0, l] 1 g(u + cu(a: - U) = 0. }

Note that an optimal a, say CL!*, is unique. We call the point 5 = u + CX* (X - U)
a $first point. A sufficient condition for 3 to be a strict local minimum is that 3
uniquely solves the linear program that arises when g is linearized about 3 [lo].
However, not all first points are local minima.

2.1. DESCRIPTION OF THE IMPLEMENTATION

When at a vertex Z, such that N(s) - F # 4, we introduce into the basis
the 2) E N(z) with the smallest associated updated cost coefficient. This heuristic
choice is based upon the intuitive notion that we would like to increase the objective
function as little as possible in order to get a good upper bound. When at a vertex
z we denote the number of elements of N(z) by L, IN(z) 1 = L, and we denote by
42 the number of vertices of N(z) that have already been visited from z (initially,
of course, e = 0). Each time a new element of N(z) is chosen, the counter 4! is
augmented by one, 4? = e + 1. At such a pivot, we keep track of the index of
the column of the simplex tableau that is introduced into the basis and the index
of the column that is removed from the basis; we denote these two numbers by
s and T, respectively. This is the minimal and most essential set of parameters
whose values must be stored for each visited vertex that has not been eliminated
from further consideration. Efficient data handling and storage management of data
are instrumental for the success of any edge search implementation; Table I is a
schematic of the book-keeping process.

To proceed with the description of our procedure, we will first need the following
definitions:

LINEARREVERSECONVEXPROGRAMS 157

DEFINITION (1). A vertex z is said to be exhausted or fathomed by fathoming
criterion type one if there is no unsearched edge emanating from z that leads to
a better vertex of P with respect to upward movement of the objective function,
N(x) = c/h

DEFINITION (2). A vertex z is said to be fathomed by fathoming criterion type
two if function g evaluated at this point is positive and if the objective value at
2, denoted by z, is greater than .z*, where z” = cTx* and z* is the current best
solution to (LRCP). That is, z E G and cTx > UB = cTx*.

2.2. FURTHERELIMINATIONOFVERTICES:FATHOMINGCRITERION 3

Let x* denote the current best local solution to (LRCP) and H* denote the bounding
plane at x*, namely a translation of H, to the point x*; HA = { x 1 cTx = cTx*}.
Moreover, let x be the current vertex under consideration such that g(x) > 0 and
cTx < cTx*. Ordinarily, x is subject to further search. However, we first perform
the following test on x and then decide what action to take next. If x fails the test,
which we callfathoming criterion type three, then it will not be fathomed. Let the
points$, k = l,... , L, denote the intersection of the extended rays emanating
from z to all vertices in N(x) with the hyperplane H*. That is

yk = x + ak (u’” - x), tik E N(x), f& > 0.

DEFINITION (3). Vertex x is said to be fathomed byfathoming criterion type three
if g(x) > 0 and g(yk) > 0 for all k = 1,. . . , L.

Let zk, k = l,... ,p denote the intersection points of distinct upward (with
respect to the objective function) paths, initiated from x, with H,, for some integer
p. Clearly,

{ Zk, k = l,...,p } c V(H,nP).

Let y” be defined as above and let C = corzzl { x”; y”, k = 1, . . . , L }, where conz,
denotes the convex hull. The following cases can be considered:

Case (i) : If for all 21 E V(H, f? P) so that w 6 C, g(v) 5 0, and ‘u is inaccessible
from x via all the possible upward paths in { 1, . . . , p}, then x can be fathomed.

Case (ii) : ,zk EC forall k= l,... ,p. Then for all zk # x*, g(z”) > 0. Since
g(x) > 0, any upward path, initiated at x and ending at zk, does not intersect
the boundary of g, ag. Thus no better solution to (LRCP) can be found on
such a path.

It is easy to see that under condition (i) and (ii), z can be eliminated from further
consideration and thus added to the set FT.

Since several implementations are possible, we present pseudo-code so that
readers may fully understand the basic steps of this implementation.

158 STEPHEN E. JACOBSEN AND KHOSROW MOSHIRVAZIRI

2.3. PSEUDO-CODE

Denote by pred (u) the most recent predecessor of the vertex u and Fathom 3(z)
is the name of a procedure which checks whether or not fathoming criterion type
three is satisfied at vertex 2.

BEGIN: [Edge-Search Algorithm]
5’ = Argmin {cTx 1 z E P }
$? = Argmax{cTzlz E P}
u = 29, lJB=cT$.T-=q5

While (U # x0 V N(v) # 4)

While (N(u) # 4) ! While not fathom 1

Select 2 E N(u) 3 5 $3
w-4 = W) \ (4
if (z E G)

15 = Argmin (0 5 (u 5 1) g(u + Q (X - u)) = 0}
it=u+&(z-u)
if (cT2<<B), UB=cTk, x*=2 end
F=FU{z} ! Else fathom 2 satisfied

else if (cTx > UB), [z # G]
F=FlJ{(z}

else if Fathom 3(z)
F=n.{(z} ! Fathom 3 satisfied

else [cTz < UB, z $Z G]
U=Z

end
end

end
end (inner while)
F=FU{u}
u = pred (u)

end (outer while)

END: [Edge-Search Algorithm]

3. Construction of Test Problems

This section briefly discusses systematic procedures for generating test problems
for LRCP’s and concave minimization problems whose globally optimal solutions
are known (see also [17, 20, 14, 5, 15, 161). Subsection 3.1 briefly discusses the

LINEARREWERSECONVEXPROGRAMS 159

random generation of the A,b,c data. Subsection 3.2 describes a modification of
the Sung-Rosen method [20], for the generation of concave minimization test
problems, in order to generate LRCP’s with known global solutions. Subsection
3.3 presents a new method for the generation on LRCP’s with known global
solutions. Section 4 presents tables of our computational results using the edge
search algorithm on the problems generated by the methods of this section.

3.1. RANDOMPOLYTOPES

In our computational experiments, we generated the polytope P and vector c ran-
domly. We employ the method of Horst and Thoai [131, with a minor modification
as follows:

Givenmandn,fori = l,...,(m-l)andj = l,...,n,theelementsofthematrix
A, aij and cj are uniformly generated in the range [-1, 13. The last row of A is
uniformly generated in [0, 13. Then, we let

bi=k , aij + 2u i = l,...,m, U E [OJ].
j=l

For simplicity of data handling, in our computational experiments, we multiplied
all the data elements by 10 and then rounded them down to the nearest integer.
Then b, is replaced with lob,. It is obvious that P = { x / Ax < b, x > 0 } # #
and is bounded.

3.2. MODIFIEDSUNG-ROSENMETHODFOR LRCP

We briefly discuss a modification of the Sung and Rosen [20,5] for the generation of
LRCP test problems. Let A = (-t%), b = (,) , where 1, is an n x n identity matrix
and 0 is a column vector of n zeros. In this notation, P = { x E Rn 1 Ax 5 6 }.
Let so be an edge point of P (and not a vertex of P). Therefore, so is a vertex
OfR = {x E PI cTx 5 z’ }, where Z’ = cTso. Let B be the (n - 1) x n
submatrix of A corresponding to the n - 1 tight constraints. Let 5 = ($) , and
let 6 be composed of the components of 6 that correspond to the rows of A and
b = (5). Define f(x) = --II&x - r’)12 (see [20] for the definition of r). Then so
is globally optimal for the concave minimization problem min { f(x) I x E fz };
also, so is globally optimal for the linear reverse convex programming problem,
min { cTx 1 z E P, g(x) 5 0}, where g(x) = f(x) + i 116 - ~11’ (again, see [20]
for the definition of u). Note that f(s”) = -i I]& - ~11~. The vector so is chosen
as follows. Let 2 = Argmax{cTxjx E P} and let x0 = Argmin{cTxlx E P}.
Let x’ be a randomly chosen point on the line segment [xmin, xmaz]. Then so is
chosen so that it’s one of the vertices of P fl {xJcTx = cTx’}.

160 STEPHENE.JACOBSENANDKHOSROWMOSHIRVAZIRI

3.3. LRCP TESTPROBLEMGENERATION

Let P = { z) Aa: < b, z 2 0 } be a nonempty polytope in Rn, and c be a n-vector
in Rn. Also, let:

2 = Argmax{cTxlx E I’},

X0 = Argmin{cTxlx E P}.

Let x’ E P be a point on the line segment [x” ,2]. Let Z’ = cTx’ and let

so E Argmax { cTx) x E P, cTx < z’ }.

That is, let fl = P fl { x) cTx 5 Z’ } and assume that so is a nondegenerate vertex
of R so that cTso = Z’ and so that it is located in the relative interior of an edge
ofP.Next,let@, j = l,..., n denote the normalized directions from so to its n
neighboring vertices and let

yj = so + (p j=l ,‘.., n, and

D = [(y’ - SO), (y2 - SO), . . .) (y” - s”)] = [d1,d2,. . . ,P]

be a matrix whose jth column is Sj. Clearly, IF’ exists and the hyperplane
H’ = { x 1 eTD-’ (x - so) = 1 } passes through yj, j = 1, . . . , n, where e is an
n-vector of ones. Let

a; = Argmax { eTD-‘x / x E 02).

Consider the simplex S = conw{ so; sl, s2,. . . , s”} defined by

S = cone{d’, d2,. . . , P} n {xleTD-'x 5 eTD-lfE}.

The vertices sj, j = 1, . . . , n are found as follows: Let

z = so + a! (y - s”)

for some (I! E R’ and where y is the intersection point of the line segment [so, Z]
with the plane H’ . Then

(3 - so> = a (y - so>
eTDdl (Z - s”) = c.2 eTD-’ (y - s”)

= a.

Thus, the constant cx is given by

a = eTD-‘(Z - s”).

Therefore,

69

S’=S”+a(y~-SsO)=s”+ab~, j=l,..., n.

LINEAR REVERSE CONVEX PROGRAMS 161

LetS= [s’,s’,..., sn] be a matrix whose jth column is si. Then,

s = s”eT + alI. (3)

To ensure that 0 is entirely contained in S, we let

cl! = eTD-‘(z - s”) + & (4)

for E > 0 and small. Next, we construct a concave function g that passes through
all vertices of the simplex, including so, thereby forcing so to be a global solution
for

Minimize cTx

Subject to : ZEP

g(4 i 0.

(LRCP) (-3

We now describe the generation of the function g (also see [161, [141, and [171 for
related work). Let h(z) be an arbitrary concave function on Rn and define

g(z) = h(z) + dTz + go.

Since it is desired that g vanish at so; sl, s2, . . . , sn, we obtain:

g(si) - g(s”) = 0, j = 1,. . . ,n.

the latter implies

dT (si - so) = h(s”) - h(si), j = 1,. . . ,n.

Thus, if B is an n x n matrix whose ith row is (si - s’)~ and ,0 is an n-vector whose
jth component is given by ,Q = h(s”) - h(d) for i, j = 1,. . . , n, respectively,
then

Clearly, B is a nonsingular matrix. Therefore, we obtain

d = B-‘/3’

and

go = -h(s”) - dTso.

Thus,

g(z) = h(z) + dTz + go

= h(z) + B-‘/h - h(2) - B-‘/W

= h(z) + B-‘/3@ - 2) - h(s”) (6)

162 STEPHENE.JACOBSENANDKHOSROWMOSHIRVAZIRI

is the desired concave function.
A variety of choices may be assumed for h(z). Thus, a family of test problems

with known global solutions can be generated.
In practice, in order to guarantee the presence of non-global local minima, a

tighter simplex containing R may be found by tilting the plane H’ or appending a
new constraint to the generated problem. This modification usually increases the
number of local solutions and does so without affecting the predetermined global
solution. To this end, let NV(s”) denote the set of neighboring vertices of so and
let

j = Argmin{cTG” Ik = l,...,n}.

Then @ is replaced by 0 . Sj for some 0 (for instance, 0 = 100). Next, let

k = Argmaz { ljzi - s”ll 1 xi E NV(s”), cT(xi - 2) = O}.

Furthermore, let nk = (x” - s”)/Ilxk - solI d enote the normalized direction from
so to xk and update s

n
Ic, the Ic-th column of matrix S, by sk = xk + 0 . n” for some

step-size 4 (for instance, 4 = 2.0). Finally, add the constraint eT (S- s”eT)-’ 2 < 1
to the problem. Clearly, (S - s”eT)- ’ is easily obtained from the computed D-l.

3.3.1. Example

The following m = 4, n = 5 problem was generated by the method of 3.3.

Minimize - 8x1 + 3x2 - 2x3 + 4x4 + 8x5

Subject to :

-6x1 + 4x2 - 9x4 - 10x5 5 -10

-9x1 + 9x2 + 7x3 + x4 - 2x5 5 15
4x1 +7X2 +6x3 +9x4+ 8x5 5 460

-18x1 + 19x2 - 39x3 + 21x4 - 21x5 5 1000

g(x) =hl(x)+dTx+gO 5 0

where,

hi(X) = -xTx, and xi>O, for i=l,..., 5.

go = -2.286151585213219e + 04

d (1) = 3.518274472794502e + 02
d (2) = -5.987833002926723e + 01
d (3) = 6.184337016912109e + 01
d (4) = -8.381979490435479e + 01
d (5) = -5.318398368208818e + 01

LINEAR REVERSE CONVEX PROGRAMS 163

The global solution 2 = so and the optimal value are:

z(l) = S.l20438164472780e+ 01
~(3) = 2.25304122368481 le + 01

z = -6.946958776315187e + 02.

Any component not listed is zero. The feasible soultion y given by:

y(1) = 9.161896191727800e + 01
y(2) = 1.336059319012680e + 01

is a strict local solution with an objective value of z = -692.8699157678436.
This can be verified by linearizing the function g about y, appending the linearized
constraint to P, solving the resulting linear program, and observing that y uniquely
solves that linear program. In fact, if one starts with the initial point (80, 10, 0, 0, 0),
MINOS5.3 converges to the solution, to eight decimal places,

y(1) = 9.161896189e + 01,
y(2) = 1.336059321e + 01.

Indeed, if one starts from the initial point (60,0,0,0,0), MINOS5.3 converges to
another non-global local minimum

y(1) = 8.600196563e + 01,
z = -6.88015725e + 02.

4. A Collection of Test Problems

This section presents numerical results for two types of problem construction: the
method presented above in Subsection 3.3, and a modification of the Sung and
Rosen method [20] for concave minimization, as discussed in Subsection 3.2.

A SUN SPARCstation 10 was used to solve the test problems given in Tables
II and IIl. It should be emphasized that the numbers of function evaluations, and
hence the CPU times, that are reported in these tables are the results of a highly
accurate line-search routine. Table II contains the results for LRCP’s. Problems l-9
were generated by the methods of 3.1 and 3.2. Problem i* differs from problem
i only in that a closed form solution for each line-search was utilized (recall,
the Sung-Rosen method produces a quadratic function). Problem 10 contains the
network flow capacity expansion example of [4]. Problems 1 l-l 8 were generated
by the method of Section 3.1 and 3.3. In addition, the functions h are hi, h:!, . . . , h5,
where

164 STEPHEN E. JACOBSEN AND KHOSROW MOSHIRVAZIRI

Table II. Linear reverse convex test problems

Edge Search Performance

No. Row/Co1 Filename #Pivot #Func. #First #Fathom Time
mxn ftp site Eval. Points Type 3 seconds

1 5 x 10 sdxlO.dat 94 1410 112 10 .48

1* 5 x 10 sdxlO.dat 94 309 112 10 .37

2 15 x 10 srl5xlO.dat 106 728 105 12 .62

3 10 x40 srlOx40.dat 256 24654 2173 24 36.08

3* 10 x 40 sr 1 Ox4O.dat 256 3470 2173 24 11.79

4 20x 15 sr20xl5.dat 340 5940 437 44 3.55

4* 20x 15 sr20xlS.dat 340 1551 437 44 2.68

5 25 x 15 sr25x 1 5.dat 32829 124650 804 7582 344.53

6 25 x 18 sr25x18.dat 27197 115687 168 5517 243.89

7 25 x 20 sr25x20.dat 3228 22862 1170 778 35.42

8 30x 15 sr30xl5.dat 34079 111845 43 8053 316.00

9 30x 18 sr30xl8.dat 10911 82093 3037 2439 134.00

9* 30 x 18 sr30x 18.dat 10911 54020 3037 2439 126.00

10 33 x 27 bj.dat 7701 22421 23 2771 57.10

11 6x8 jm6x8h4.dat 176 697 31 32 .39

12 11 x5 jmllx5hl.dat 38 356 21 1 .27

13 10 x 20 jmlOx20hl.dat 4761 38435 5316 1310 11.00

14 11 x 15 jml lxl5hl.dat 597 3605 405 146 1.98

15 11 x20 jml lx20h3.dat 1537 13418 2388 315 6.35

16 11 x40 jml lx40h5.dat 34087 437275 2340 11354 106.00

17 21 x 10 jm2lxlOh2,dat 294 1466 142 69 2.04

18 30x 10 jm30xlOhl.dat 728 3408 349 196 5.48

LINEAR REVERSE CONVEX PROGRAMS 165

Table III. Concave minimization test problems

Edge Search Performance

No. Row/Co1 Filename #Pivot #Func. #First Time
mxn ftp site Eval. Points seconds

19 3x5 sr3x5c.dat 10 34 6 .08

20 5x3 sr5x3c.dat 12 24 4 .08

21 8x 10 sr8xlOc.dat 891 1713 445 1.61

22 15 x 10 srl5xlOc.dat 12421 37147 6194 36.77

23 15 x 10 2srl5xlOc.dat 12171 30391 6074 38.23

24 20 x 15 sr20xl5c.dat 23317 69844 11644 31.14

25 25 x 18 sr25xl8c.dat 34136 85203 16998 367.3

26 25 x 20 sr25x20c.dat 34154 85234 16999 401.8

27 10 x 20 fpc.dat 34044 102048 16999 98.0

28 6x4 ht249c.dat 12 29 5 .08

29 9x5 hthc.dat 19 32 6 .17

30 21 x 50 ht21x50ch5.dat 34982 98999 17060 120.2

/Q(x) = -xTx

/Q(x) = -xTx + 2 j/hi i [1 i=l

h3(x) = -XT Rx
hA(X) = -(?-TX) Zn(1 + rTx), r.=(~,;,;,... 7 A,‘.

2. hs(z)=-(x~+~x~+~x3+...+~x,)2

The diagonal matrix A in hs in Problem 16 is:

A = Diag [9, 4, 8, 7, 7, 9, 1, 9, 5, 8, 2, 7, 7, 8, 8, 3, 9, 9, 7, 91

These functions above are taken from [6, 121.

Table IIIcontains results for concave minimization problems. Problems 19-26
were generated by the methods of Subsections 3.1 and 3.2. Problem 27 is taken
from Floudas and Pardalos [7], Problem 28 is an example in Horst and Tuy [121,

166 STEPHEN E. JACOBSEN AND KHOSROW MOSHIRVAZIRI

and Problem 29 is taken from Horst and Thoai [13]. Problem 30 was created by
the method of Subsection 3.1 and the objective function, h5 from [12], is used.

References

1. Avriel, M. and Williams, A.C. (1970), Complementary Geometric Programming, SIAM Journal
of Applied Mathematics 19, 125-141.

2. Avriel, M. and Williams, AC. (1971), An Extension of Geometric Programming with Applica-
tions in Engineering Optimization, Journal of Engineering Mathematics 5, 187-194.

3. Bansal, PP. and Jacobsen, SE. (1975), Characterization of Basic Solutions For a Class of
Nonconvex Programs, Journal of Optimization Theory and Applications 15,549-564.

4. Bansal, Pl? and Jacobsen, SE. (1975), An Algorithm for Optimizing Network Flow Capacity
under Economies-of-Scale, Journal of Optimization Theory and Applications 15,565-586.

5. BenSaad, S. and Jacobsen, S.E. (1990), A Level Set Algorithm for a Class of Reverse Convex
Programs, Annals of Operations Research 25, 19-42.

6. Benson, HP and Sayin, S. (1994), A Finite Concave Minimization Algorithm Using Branch and
Bound and Neighbor Generation, Journal of Global Optimization 5(l), 1-14.

7. Floudas, C.A. and Pardalos, P.M. (1990), A Collection of Test Problems for Constrained Global
Optimization Algorithms, Springer-Verlag, Lecture Notes in Computer Sciences 455.

8. Gurlitz, T.R. and Jacobsen, SE. (1991), On the Use of Cuts in Reverse Convex Programs, Journal
of Optimization Theory and Application 68 (2).

9. Hillestad, R.J. and Jacobsen, S.E. (1980), Linear Programs with an Additional Reverse-Convex
Constraint, Journal of Applied Mathematics and Optimization 6,257-269.

10. Hillestad, R.J. and Jacobsen, SE. (1980), Reverse-Convex Programming, Journal of Applied
Mathematics and Optimization 6, 63-78.

11. Hillestad, R.J. (1975), Optimization Problems Subject to a Budget Constraint with Economies
of Scale, Operations Research, Journal of Applied Mathematics and Optimization 23 (6), 1091-
1098.

12. Horst, R. and Tuy, H. (1990), Global Optimization: Deterministic Approaches, Springer-Verlag,
Berlin-New York.

13. Horst, R. and Thoai, N.V. (1989), Modification, Implementation and Comparison of Three Algo-
rithms for Globally Solving Linearly Constrained Concave Minimization Problems, Computing
42,27 l-289.

14. Kalantari, B. and Rosen, J.B. (1986), Construction of Large-Scale Global Minimum Concave
Quadratic Test Problems, Journal of Optimization Theory and Applications 48,303-313.

15. Moshirvaziri, K. (1994), A Generalization of the Construction of Test Problems for Nonconvex
Optimization, Journal of Global Optimization S(l), 21-34.

16. Moshirvaziri, K. (1994), Construction of Test Problems for a Class of Reverse Convex Programs,
Journal of Optimization Theory and Applications N(2), 343-354.

17. Pardalos, Panos M. (1987) Generation of Large-Scale Quadratic Programs for Use as Global
Optimization Test Problems, ACM Transaction on Mathematical Software 13 (2), 143-147.

18. Rosen, J.B. (1966), Iterative Solution of Non-linear Optimal Control Problems, SIAM Journal
of Control 4,223-244.

19. Rosen, J.B. (1983) Global Minimization of a Linearly Constrained Concave Function by Partition
of Feasible Domain, Mathematics of Operations Research 8,215-230.

20. Sung, Y. and Rosen, J.B. (1982), Global Minimum Test Problem Construction, Mathematical
Programming 24,353-355.

21. Thuong, Nguyen Van and Tuy, Hoang (1985), A Finite Algorithm for Solving Linear Programs
with an Additional Reverse Convex Constraint, Springer-VerIag, Lecture Notes in Economics
and Mathematical Systems 225, 291-302.

22. Tuy, Hoang (1987), Convex Programs with an Additional Reverse Convex Constraint, Journal
of Optimization Theory and Applications 52(3), 463-485.

LINEAR REVERSE CONVEX PROGRAMS 167

23. Tuy, Hoang (1985), A General Deterministic Approach to Global Optimization via D.C. Pro-
gramming, In: Hiriart-Urruty, J.B. (ed.), Fermat Days: Mathematicsfir Optimization, Elsevier,
Amsterdam, 137-162.

24. Ueing, U. (1972), A Combinatorial Method to Compute a Global Solution of Certain Non-convex
Optimization Problems, in Numerical Methods for Nonlinear Optimization, EA. Lootsma (ed.),
Academic Press, 223-230.

